این مقاله علمی پژوهشی (ISI) به زبان انگلیسی از نشریه الزویر مربوط به سال ۲۰۲۲ دارای ۶ صفحه انگلیسی با فرمت PDF می باشد در ادامه این صفحه لینک دانلود رایگان مقاله انگلیسی و بخشی از ترجمه فارسی مقاله موجود می باشد.
کد محصول: M1265
سال نشر: ۲۰۲۲
نام ناشر (پایگاه داده): الزویر
نام مجله: Research Policy
نوع مقاله: علمی پژوهشی (Research articles)
تعداد صفحه انگلیسی: ۶ صفحه PDF
عنوان کامل فارسی:
مقاله انگلیسی ۲۰۲۲ : اندازهگیری تأثیر هوش مصنوعی بر مشاغل در سطح سازمان: درسهایی از یک نظرسنجی از رهبران کسب و کار در بریتانیا
عنوان کامل انگلیسی:
Measuring the impact of AI on jobs at the organization level: Lessons from a survey of UK business leaders
برای دانلود رایگان مقاله انگلیسی بر روی دکمه ذیل کلیک نمایید
وضعیت ترجمه: این مقاله تاکنون ترجمه نشده برای سفارش ترجمه تخصصی مقاله بر روی دکمه ذیل کلیک نمایید (کد مقاله:M1265)
مقالات مرتبط با این موضوع: برای مشاهده سایر مقالات مرتبط با این موضوع (با ترجمه و بدون ترجمه) بر روی دکمه ذیل کلیک نمایید
Abstract
Advances in artificial intelligence (AI) have reignited debates about the impact of technology on the future of work, raising concerns about massive job losses. However, extant evidence is beset by methodological limitations. The majority of studies are either (1) based on modelling predictions, underpinned by subjective judgements or (2) measure the effect of automation technologies more broadly using proxies for AI effects. Analysis of what actually happens in organisations introducing AI-enabled technologies is lacking. This Research Note proposes a third methodology based on the use of bespoke employer surveys. Drawing on a new and unique survey of UK business leaders, it illustrates the utility of this approach through the presentation of descriptive findings on the association between introduction of AI and job creation and destruction within organisations. Directions for future research using this approach are suggested.
Keywords: Artificial intelligence, Automation, Future of work, Job creation, Job destruction, Measuring technological change
Introduction
Developments in digital technology have raised debates about the future of work and, indeed, whether there will be any work in the future for humans (Dunlop, 2016). Such debates are not new and accompanied earlier waves of workplace automation (e.g. Jenkins and Sherman, 1979). The predicted mass job losses, however, did not occur (Whitley and Wilson, 1982). This time is thought to be different, as AI combined with greater availability of data and enhanced processing power enables computers to perform a far greater range of tasks than previous waves of digitalisation (Brynjolfsson and McAfee, 2014). Seemingly, jobs really could disappear with the coming of these clever robots – a future that has been called ‘robo-geddon’ by some commentators (see Brown Review, 2019).
For simplicity, we refer to this type of AI-enabled advanced automation as ‘AI-enabled’ or simply ‘AI’ to distinguish it from other non-AIenabled technology. A key issue, and the focus of this Research Note, are the methodological challenges in measuring AI-enabled technology’s impact on jobs within organisations. In Europe at least, there is no administrative dataset or statutory survey dedicated to the impact of AI on jobs at the organisational level. Datasets that do include items on jobrelated new technology and innovation do not allow in-depth examination of the effects of these on jobs (Napolitano and Greenan, 2021)…
Concluding remarks
Developments in workplace-based AI-enabled technology have prompted concerns that a growing number of jobs are at risk of technological substitution resulting in mass unemployment. However, the methodologies used to analyse this possibility do not present data on what is happening to jobs in organisations that introduce this technology. Instead, studies either are based on modelling predictions infused with subjective judgements of what might happen or draw conclusions from organisation-level data using proxy measures that do not fully distinguish between AI and non-AI technology. Whilst these studies undoubtedly offer insights and usefully prompt further analyses, understanding needs to move beyond predictions and proxies…
مقالات مرتبط با این موضوع |
دانلود مقاله انگلیسی رشته مدیریت دانلود ترجمه مقاله در مورد هوش مصنوعی دانلود ترجمه مقاله در مورد مدیریت بازرگانی |