خانه / مقالات انگلیسی با ترجمه / مدیریت / مقاله ترجمه شده تشخیص مدیریت درآمد با شبکه های عصبی

مقاله ترجمه شده تشخیص مدیریت درآمد با شبکه های عصبی

دانلود رایگان مقاله بیس انگلیسی خرید و دانلود ترجمه ی مقاله انگلیسی

کد محصول: M539

قیمت فایل ترجمه شده   ۱۲۰۰۰   تومان

تعداد صفحه انگلیسی: ۷

سال نشر: ۲۰۱۲

تعداد صفحه ترجمه فارسی: ۲۱  صفحه  WORD

عنوان فارسی:

مقاله ترجمه شده تشخیص مدیریت درآمد با شبکه های عصبی

عنوان انگلیسی:

Detecting earnings management with neural networks

چکیده فارسی:

مطالعات زیادی جهت ارزیابی و سنجش رخداد و پیدایش مدیریت درآمد در زمینه های مختلف صورت گرفته است. در اکثر مطالعات، مفروضات بر این است که درآمد از طریق اقلام تعهدی حسابداری، مدیریت می‌شود. بدین ترتیب یکسری از مدل‌های تشخیص مدیریت درآمد مبتنی بر اقلام تعهدی پیشنهاد شد. توانایی این مدل‌ها برای تشخیص مدیریت درآمد، توسط برخی مطالعات دیگر زیر سؤال رفته است. یک توجیه برای عملکرد ضعیف مدل‌های موجود آن است که اکثر این مدل‌ها از یک رویکرد خطی برای مدلسازی فرایند اقلام تعهدی حتی در صورتی که فرایند اقلام تعهدی غیر خطی باشد، استفاده می‌کنند. گزینه دیگر در مواجهه با موارد غیرخطی، استفاده از انواع مختلف شبکه های عصبی است. هدف از این مطالعه ارزیابی این مورد است که آیا مدل‌های مبتنی بر عملکرد عصبی نسبت به مدل‌های خطی و قسمتی خطی درتشخیص مدیریت درآمد، موثرتر هستند یا خیر؟. این مطالعه شامل مدل‌های شبکه عصبی براساس نقشه خود سازمان دهنده SOM) )، یک مفهوم چند لایه MLP) ) و یک شبکه عصبی رگرسیون عمومی GRNN) ) می‌باشد. نتایج نشان می‌دهد عملکرد مدل بر مبنای شبکه های عصبی، بهترین عملکرد را دارا می‌باشد، درحالی که مدل خطی مبتنی بر رگرسیون، ضعیف‌ترین عملکرد را دارد، همچنین نتایج نشان داد که هر ۵ مدل مورد ارزیابی قرار گرفته، قادر به تخمین اقلام تعهدی اختیاری هستند که باقدری اغماض بعنوان نماینده مدیریت درآمد، عمل می‌نماید.

مقدمه

تعدادی از مطالعات نسبت به سنجش پیدایش مدیریت درآمد درچند زمینه، مانند پیش از ارائه اولیه به عموم Teoh,Welch,&Wong,1998))، درطول نابسامانی اقتصادی Defond &Jiambalvo,1994;Jaggi&Lee,2002) و در طول تغییرات در استانداردهای حسابداری Van (Tendeloo & Vanstraelen,2005) اقدام نمودند. در اکثر مطالعات، مفروضات براین اساس است که درآمدها طبق اقلام تعهدی حسابداری، مدیریت می‌شود. براساس این فرض پیشنهاد شد که مدل‌های مختلف، اقلام تعهدی را به دو دسته اقلام تعهدی اختیاری (تعهد قابل پیش بینی) و اقلام تعهدی غیراختیاری (تعهدی غیر قابل پیش بینی) تقسیم شود. مقدار اقلام تعهدی اختیاری محاسبه شده توسط این مدل‌ها برای مدیریت درآمد بعنوان یک نماینده عمل می‌کند. مساله مهم در استفاده از مدل‌های تخمین اقلام تعهدی اختیاری این است که مدیریت درآمد مستقیماً قابل اندازه گیری نیست. به همین جهت امکان تشخیص و تمایز بین فعالیت‌های مدیریت درآمد با فعالیت‌های تجاری عادی کاری سخت است. از همین رو ارزیابی عملکرد واقعی این مدل‌ها کاری مساله ساز است. توانایی مدل‌های تخمین اقلام تعهدی اختیاری برای استخراج بخش اختیاری اقلام تعهدی در یکسری از مطالعات مورد سؤال قرار گرفته است. برای مثال Thomas and Zhang(2000) نشان دادند که اکثر مدل‌های تخمین اقلام تعهدی اختیاری بدتر از یک فرض ساده که میزان اقلام تعهد غیراختیاری را مساوی ۵ درصد از کل دارایی‌ها فرض می‌کند، عمل می‌کنند. یک دلیل برای این عملکرد ضعیف، ناشی از وجود داده های عمدتاً مغشوش است. دلیل دیگر این قضیه آن است که اکثر مدل‌ها از رویکرد خطی برای مدلسازی فرایند اقلام تعهدی استفاده می‌کنند و این موجب نادرستی عملکرد مدل‌ها می‌شود همچنانکه نتایج حاصل از چند مطالعه پیشنهاد می‌کند، فرایند اقلام تعهدی، غیرخطی در نظر گرفته شود e.g.Dechow,Sloan,& Sweeney, 1995; Jeter & Shivakumar, 1999;Kothari,Leone,& Wasley,2005). علیرغم نیاز آشکار به رویکرد غیرخطی برای تخمین اقلام تعهدی اختیاری، تعداد کمی پیشنهاد برای کاربردن این مدل‌ها ارائه شده است

Abstract

A large body of studies has examined the occurrence of earnings management in various contexts. In most studies, the assumption has been that earnings are managed through accounting accruals. Thus, a range of accrual based earnings management detection models have been suggested. The ability of these models to detect earnings management has, however, been questioned in a number of studies. An explanation to the poor performance of the existing models is that most models use a linear approach for modeling the accrual process even though the accrual process has in fact proven non-linear in several studies. An alternative way to deal with the non-linearity is to use various types of neural networks. The purpose of this study is to assess whether neural network-based models outperform linear and piecewise linear-based models in detecting earnings management. The study comprises neural network models based on a self-organizing map (SOM), a multilayer perceptron (MLP) and a general regression neural network (GRNN). The results show that the GRNN-based model performs best, whereas the linear regression-based model has the poorest performance. However, the results also show that all five models assessed in this study estimate discretionary accruals, a proxy for earnings management, with some bias.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

Time limit is exhausted. Please reload the CAPTCHA.