کد محصول BR9
تعداد صفحات: ۸۰ صفحه فایل WORD
قیمت: ۱۵۰۰۰ تومان
پیشگفتار
۱-۱ مقدمه
این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی میباشد که تحول زیادی را در بهرهبرداری و کنترل سیستمهای قدرت ایجاد خواهد کرد.
با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود میآیند.بنابراین ظرفیت بهرهبرداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، میباشد.این امر موجب عدم بهره برداری بهینه از سیستمهای انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان،احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.
با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطافپذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.
پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد .
برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدلهای منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار
می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند .
۱-۲ محدودیتهای انتقال توان در سیستمهای قدرت
یک سیستم قدرت از سه قسمت عمده تولید،انتقال و مصرف تشکیل شده است. هدف یک مهندس بهرهبردار قدرت این است که توان خواسته شده مصرفکننده را تحت ولتاژ ثابت و فرکانس معین تامین نماید.از لحاظ کنترل روی مصرف کننده نمی توان محدودیت زیادی اعمال کرد زیرا او خریدار است و خواسته هایش باید تامین شود.
در نتیجه ، کنترل اصلی در شبکه برق روی بخش تولید و انتقال است.حالت مطلوب در سیستم تولید و انتقال این است که این سیستم بایستی قابلیت تولید و انتقال توان خواسته شده را دارا باشد.معمولاً در طراحی اولیه،این خواسته در نظر گرفته می شود.ولی با گذشت زمان تغییراتی از قبیل رشد مصرف،اتصال شبکههای دیگر به شبکه قبلی و تاسیس نیروگاهها و خطوط انتقال جدید و … این تعادل را بر هم زده و محدودیت هایی را در بهره برداری از شبکه قدرت بوجود می آورند.
گسترش سیستم های قدرت و به هم پیوستن آنها در دو ناحیه متمایز صورت گرفت. ناحیه ای با درصد جمعیت زیاد و وجود نیروگاه های نزدیک به مصرف که توسعه سیستم قدرت را تبدیل به یک شبکه به همپیوسته غربالی تبدیل کرده است ، مثل شبکه های قدرت در اروپا و شرق ایالات متحده آمریکا و ناحیهای که مقدار توان عظیمی را از نیروگاههای آبی به مراکز مصرف در فواصل دور تحویل می دهد.از قبیل سیستمهای موجود در کانادا و برزیل .
الحاق شبکهها به هم علاوه بر مزیت فراوانی که در برداشت،مشکلات عدیدهای را هم به همراه آورد. مشکلی که در انتقال توان سیستمهای به هم پیوسته غربالی وجود دارد، عبور توان در مسیرهای ناخواسته است که به عنوان مشکل توان در حلقه شناخته می شود.عبور این توان در مسیرهای ناخواسته موجب افزایش بار غیر مجاز و عدم بهرهبرداری بهینه از سیستم خواهد شد.لذا بایستی به طریقی توان عبوری از یک مسیر را کنترل نموده و از طرفی برای سیستم های انتقال انرژی طولانی مسئله توان در حلقه مشکل ساز نیست بلکه مشکل عمده در این سیستم ها ، مسئله پایداری گذرا و افت ولتاژ غیر مجاز است.به این معنی که برای حفظ پایداری شبکه و تثبیت سطح ولتاژ مجاز،توان عبوری در سیستم انتقال باید محدود شود.بر این اساس،حالت ایدهآل یک سیستم انتقال انرژی موقعی است که :
۱. کنترل توان در مسیرهای خواسته شده انجام پذیرد.
۲. ظرفیت بهره برداری کلیه خطوط در حد ظرفیت حرارتی قرار داشته باشد.
در نتیجه مشکلات عمده در بهرهبرداری از سیستمهای انتقال انرژی عبارتند از عبور توان در مسیرهای ناخواسته و عدم بهرهبرداری از ظرفیت سیستمهای انتقال در حد ظرفیت حرارتی.
۱-۲-۱ عبور توان در مسیرهای ناخواسته
برای بررسی مسئله عبور توان در مسیرهای ناخواسته ، سیستم شکل (۱-۱) زیر را در نظر بگیرید.
فهرست مطالب :
فصل اول : پیشگفتار
۱-۱ مقدمه
۱-۲ محدودیت های انتقال توان در سیستم های قدرت
۱-۲-۱ عبور توان در مسیرهای ناخواسته
۱-۲-۲ ضرفیت توان خطوط انتقال
۱-۳ مشخصه باپذیری خطوط انتقال
۱-۳-۱ محدودیت حرارتی
۱-۳-۲ محدودیت افت ولتاژ
۱-۳-۳ محدودیت پایداری
۱-۴ راه حلها
۱-۴-۱ کاهش امپدانس خط با نصب خازن سری
۱-۴-۲ بهبود پرفیل ولتاژ در وسط خط
۱-۴-۳ کنترل توان با تغییر زاویه قدرت
۱-۵ راه حلهای کلاسیک
۱-۵-۱ بانکهای خازنی سری با کلیدهای مکانیکی
۱-۵-۲ بانکهای خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی
۱-۵-۳ جابجاگر فاز
فصل دوم : آشنایی اجمالی با ادوات FACTS
۲-۱ مقدمه ۱۱
۲-۲ انواع اصلی کنترل کننده های FACTS
۲-۲-۱ کنترل کنندههای سری
۲-۲-۱-۱ جبران ساز سنکرون استاتیکی به صورت سری(SSSC)
۲-۲-۱-۲ کنترل کنندههای انتقال توان میان خط(IPFC)
۲-۲-۱-۳ خازن سری با کنترل تریستوری (TCSC)
۲-۲-۱-۴ خازن سری قابل کلیدزنی با تریستور (TSSSC)
۲-۲-۱-۵ خازن سری قابل کلید زنی با تریستور (TSSC)
۲-۲-۱-۶ راکتور سری قابل کلید زنی با تریستور (TSSR) 13
۲-۲-۱-۷ راکتور با کنترل تریستوری (TCSR)
۲-۲-۲ کنترل کنندههای موازی
۲-۲-۲-۱ جبران کننده سنکرون استاتیکی(STATCOM)
۲-۲-۲-۲ مولد سنکرون استاتیکی (SSG)
۲-۲-۲-۳ جبران ساز توان راکتیو استاتیکی(SVC)
۲-۲-۲-۴ راکتور قابل کنترل با تریستور (TCR)
۲-۲-۲-۵ راکتور قابل کلیدزنی با تریستور(TSR)
۲-۲-۲-۶ خازن قابل کلیدزنی با تریستور (TSC)
۲-۲-۲-۷ مولد یا جذب کننده توان راکتیو (SVG)
۲-۲-۲-۸ سیستم توان راکتیو استاتیکی (SVS)
۲-۲-۲-۹ ترمز مقاومتی با کنترل تریستوری (TCBR)
۲-۲-۳ کنترل کننده ترکیبی سری – موازی
۲-۲-۳-۱ کنترل کننده یکپارچه انتقال توان (UPFC)
۲-۲-۳-۲ محدود کننده ولتاژ با کنترل تریستوری(TCVL)
۲-۲-۳-۳ تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR)
۲-۲-۳-۴ جبرانسازهای استاتیکی توان راکتیو SVC و STATCOM
۲-۳ مقایسه میان SVC و STATCOM
۲-۴ خازن سری کنترل شده با تریستور GTO (GCSC)
۲-۵ خازن سری سوئیچ شده با تریستور (TSSC)
۲-۶ خازن سری کنترل شده با تریستور (TCSC)
فصل سوم : بررسی انواع کاربردی ادوات FACTS
۳-۱ مقدمه
۳-۲ منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل
۳-۳ کنترل کننده توان عبوری بین خطی (IPFC)
۳-۴ جبرانگر سنکرون استاتیکی سری (SSSC)
۳-۵ جبرانگر سنکرون استاتیکی (STATCOM)
۳-۶ آشنایی با UPFC
۳-۶-۱ تاثیر UPFC بر منحنی بارپذیری
۳-۶-۲ معرفی UPFC
۳-۷ آشنایی با SMES
۳-۷-۱ نحوه کار سیستم SMES
۳-۷-۲ مقایسه SMES با دیگر ذخیره کننده های انرژی
۳-۸ آشنایی با UPQC
۳-۸-۱ ساختار و وظایف UPQC
۳-۹ آشنایی با HVDCLIGHT
۳-۹-۱ مزایای سیستم HVDCLIGHT
۳-۹-۲ کاربرد سیستم HVDCLIGHT
۳-۹-۳ عیب سیستم HVDCLIGHT
۳-۹-۴ بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC
۳-۱۰ مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع
۳-۱۱ SVC
۳-۱۲ مبدل های منبع ولتاژ VSC
فصل چهارم : نتیجه گیری ۵۵
منابع:
[۱] نارین جی،هینگورانی،لازلوکایوگی ،آشنایی با FACTS ، مهندسین مشاور قدس نیرو، بهار۸۴.
[۲] هوآسونگ، یونگ، تی جانز ،آلن،کمیته تحقیقات شرکت برق منطقهای هرمزگان ، دانشگاه هرمزگان ، زمستان ۱۳۷۹.
[۳] نظرپور،داریوش ، حسینی،سید حسین، قره پتیان ،گئورگ ، مدلسازی جدید UPFC برای مطالعات دینامیکی و میراسازی نوسانات سیستمهای قدرت ، بیستمین کنفرانس بین المللی برق ، صص ۱- ۸ ،۱۳۸۳.
[۴] اسماعیلی،احمد،نبوی نیاکی، سید علی،روحی، جواد،نمایش تاثیر UPFC بر منحنی بارپذیری Tie –Line ، سیزدهمین کنفرانس مهندسی برق ایران، اردیبهشت ۸۴.
[۵] نشریه صنعت برق ، شهریور ۸۴ ، شماره ۱۱۱
[۶] نورزیان ،رضا ، عابدی، مهرداد ، قره پتیان، گئورگ، فتحی، سید حمید ، ارایه روش کنترلی مناسب برای UPQC به منظور بهسازی جامع اغتشاشات مخل در کیفیت توان، هیجدهمین کنفرانس بین المللی برق.
[۷] پرنیانی،مصطفی،اسکندری،حمید،نشریه علمی برق،سال پانزدهم ، شماره ۳۵ ، ص ۹۰-۷۷ ، ۱۳۸۱.
[۸] اسماعیلی جعفر آبادی، سعید، شولایی ،عباس ، تحلیل و مدلسازی و بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC ، هیجدهمین کنفرانس بین المللی برق .
[۹] نوروزیان ،رضا،قره پتیان،گئورگ،فتحی، سیدحمید ، عابدی، مهرداد، مقایسه TCR – SCC از دیدگاه هارمونیکهای تزریقی به شبکه توزیع ، نهمین کنفرانس شبکه های توزیع نیروی برق، اردیبهشت ۸۴ .
[۱۰] حقی فام، محمود رضا، فریدون درافشان، احمد ، کاربرد SVC برای کنترل بهینه قدرت راکتیو،نهمین کنفرانس شبکههای توزیع نیروی برق،صص ۳۶۱-۳۵۲ .
[۱۱] کاظمی، احمد ، فرخی، محمد ، نیاستی، محسن ، هماهنگی عملکرد SVC و ULTC به کمک منطق فازی ، سیزدهمین کنفرانس مهندسی برق ایران ، اردیبهشت ۸۴.